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SUMMARY 

Methods such as Genome-Wide Association Studies (GWAS) and Bayesian genomic prediction 
(BayesR) are commonly employed to enhance understanding of the genetic architecture of complex 
traits, identify genetic variants associated with these traits, and assist in breeding decisions and 
market allocation. This study aims to uncover genes harbouring variants influencing eating quality 
traits, including tenderness, juiciness, flavour, overall liking, and meat quality score (MQ4) in a 
large and diverse population of Bos taurus indicus cattle from Australia, the USA, and Ireland. The 
analysis involved 7,380 young males and females with phenotypic data and genotypes imputed up 
to 709,768 SNP (Illumina HD array). The BayesR approach was applied with a chain length of 
40,000 iterations and a burn-in of 5,000 iterations. Notably, the findings highlight 324 SNPs with 
exceptionally high posterior inclusion probabilities (PIP > 0.9999 quantile for each trait), linked to 
100 candidate genes. Among these, shared genetic signals across most of the traits within or close 
to genes such as CAPN1, CAST, bta-mir-2407, and CCDC171 underscore their pivotal roles in meat 
quality across diverse populations. These insights contribute significantly to the global effort to 
enhance meat quality through genomics-driven cattle breeding programs.  
 
INTRODUCTION 

With global meat consumption projected to increase by 2030, especially in developing countries, 
the beef industry faces both a significant opportunity and a challenge to meet growing consumer 
demands. The Organisation for Economic Co-operation and Development (OECD) forecasts that 
this rise in demand will drive a need for more tailored beef products, opening avenues for beef 
consumer segmentation. Different criteria and/or perceptions are used to define meat quality 
(including sensory, nutritional, technological or hygienic quality (Geletu et al. 2021) and 
sustainability (Font-I-Furnols 2023)). Meat tenderness is considered the main sensory trait and is 
heavily influenced by consumer preferences and market demand (Warner et al. 2022).  

Understanding the genetic basis of beef quality traits is essential for improving the efficiency and 
precision of cattle breeding programs. These traits are polygenic, shaped by many genes with small 
effects, as well as environmental factors (Arikawa et al. 2024), making them challenging to 
accurately identify and predict. The majority of studies have focused on using GWAS models to 
identify genomic regions associated with meat quality related traits like tenderness, important for 
beef quality in cattle populations (Medeiros de Oliveira Silva et al. 2017; Arikawa et al. 2024) but 
limited studies have utilized Bayesian methods for association analyses. Classical models, like 
GWAS, fit each SNP separately which can limit precision and statistical power due to multiple 
testing. On the other hand, Bayesian methods implicitly account for population structure and the 
multiple-testing problem inherent in classical single-marker GWAS (Wolc and Dekkers 2022).  

This study leverages a genetically diverse dataset of Bos taurus indicus cattle from Australia 
(AUS), the USA, and Ireland (IR) to identify potential causal variants underlying eating quality 
traits. Results enhance understanding of genetic variation influencing beef cattle eating quality. 
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MATERIALS AND METHODS 
Data collection. A total of 7,384 animals (3197, 1297 and 2900 from the USA, IR and AUS 

respectively) had 5 consumer meat eating quality traits; tenderness (TENDER), flavour 
(FLAVOUR), juiciness (JUICY), overall liking (OVERALL) and meat quality score (MQ4), where 
MQ4 is formed by weighting the four sensory 
scores (Watson et al. 2008). These records 
belong to 156 groups and grill cooking method. 
Each group had at least 5 animal records. In total 
across three countries there were 4552 males, 
1625 steers, and 1188 females. Samples aged 
from 3 to 52 days with average (±SD) of 13.4 
(3.1). A total of 5,532 animals were hormone 
growth promoter (HGP) free. Animals with 
carcass weights outside 2 times the interquartile 
range for each country were removed. Relaxed 
thresholds based on the distribution of 99.9% of 
the records were used to remove the possible 
outliers for 5 eating quality traits. 

Genotyping. Low-density genotypes from 
AUS (50k and 100k SNP chips) and imputed 
high-density genotypes from the USA and IR 
were available. Genotypes were imputed up to 
709,768 SNPs (bovine high-density (HD) array) 
using findhap4 software (VanRaden et al. 2013). 
Imputation was performed separately for each 
country, utilizing a reference set of 4506 cattle from relevant breeds genotyped with the Bovine HD 
array (Hayes et al. 2023). 

Bayesian genomic prediction. In the BayesR approach (Erbe et al. 2012), the following 
prediction equation was used to estimate the SNP effects for each of the five meat quality traits. 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆 
where 𝒚𝒚 is a vector of phenotypes, b includes the estimates of fixed class effects of contemporary 
group, SEX and HGP treatments, and covariates of days aged after slaughter, carcass weight, first 4 
principal components (PCAs) from genotypes, heterosis, and country, 𝒈𝒈 is a vector of 𝒎𝒎 SNP effects 
with distribution 𝒈𝒈~𝑵𝑵(𝟎𝟎,𝝈𝝈𝒊𝒊𝟐𝟐). The heterosis was defined as the regression of the trait on proportion 
of heterozygote loci across all loci for each animal. The genetic variance of the trait (𝝈𝝈𝒈𝒈𝟐𝟐 ) was 
assumed 𝝈𝝈𝒊𝒊𝟐𝟐 = {𝟎𝟎,  𝟏𝟏𝟏𝟏−𝟒𝟒𝝈𝝈𝒈𝒈𝟐𝟐 , 𝟏𝟏𝟏𝟏−𝟑𝟑𝝈𝝈𝒈𝒈𝟐𝟐 , 𝟏𝟏𝟏𝟏−𝟐𝟐𝝈𝝈𝒈𝒈𝟐𝟐}. This setup allows the BayesR model to have a 
more flexible SNP effect distribution which is a mixture of four possible normal distributions, all 
with a mean of 0 but with different variances. 𝒁𝒁 is a matrix 𝒏𝒏 𝒙𝒙 𝒎𝒎 of standardized genotypes and 𝒆𝒆 
is a vector of random residuals with 𝒆𝒆~𝑵𝑵(𝟎𝟎,𝝈𝝈𝒆𝒆𝟐𝟐). The posterior distributions were sampled using 
Marcov Chain Monte Carlo (MCMC) with Gibbs Sampling in GCTB (Zeng et al. 2018) with 40,000 
iterations of which the first 5,000 are discarded as burn-in.  

Functional analysis. We conducted a follow-up study identifying genes impacting eating quality 
in cattle. Top SNPs with Posterior Inclusion Probability (PIP) values above the 0.9999 quantile were 
used, focusing on strong associations. Genes within 10 kb of selected SNPs were analysed using 
Bos taurus ARS-UCD1.2 assembly as a reference for gene ontology enrichment analysis. Functional 
enrichment analysis was performed using DAVID 6.8 (Huang et al. 2009), with Bos taurus as 
background. 
 

Figure 1. Principal component analysis (PCA) 
results for genotyped animals (Legends indicate 
the contributing countries, reflecting the genetic 
diversity of the dataset.) 
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RESULTS AND DISCUSSION 
Population overview. Figure 1 visualizes breed structure using PCA of imputed genotypes in 

GCTA (Yang et al. 2011b). In this figure, PC1 separates Bos taurus from Bos indicus animals, with 
Australian animals distributed along this axis. PC2 distinguishes different Bos taurus breeds, with 
Irish, some USA, and Australian animals lying along this axis. Animals used in this study were 
commercial animals and did not have an accurate breed assigned, so the labels in the figure refer to 
the contributing country rather than breed identities. (Figure 1). 

Identification of potential candidate genes. Potential candidate genes were identified from top 
SNPs with PIP values above the 0.9999 quantile, yielding 324 SNPs across five traits. These SNPs 
clustered on several chromosomes, with notable associations to CAST and CAPN1 genes on 
chromosomes 7 and 29. Some SNPs were linked to multiple traits (Figure 2). 

A total of 100 candidate genes located within a window of 10 kb upstream or downstream of the 
TOP-SNPs, including both novel genes and those previously reported in the literature. Among the 
novel candidates, ANXA5 (Wang et al. 2024) and BNC2 (Tan et al. Unpublished data) were 
highlighted for their potential roles in lipid metabolism and energy balance, contributing to marbling 
and tenderness. Additionally, bta-mir-2407 was identified as a potential lipid related differentially 
expressed miRNAs (Li et al. 2022), further influencing meat quality. Several previously known 
genes were also confirmed, such as CAPN1 and CAST, which are well-established for their 
involvement in post-mortem proteolysis and tenderness (Arikawa et al. 2024), as well as TTLL5, 
and DOCK2, which are recognized for their role in omega-3 and omega-6 fatty acids profile in 
muscle, and actin cytoskeleton remodelling, respectively (Lemos et al. 2016). The most strongly 

Figure 2. A bird’s-eye view of the Manhattan plots showing only the top SNP 
(PIP>0.9999) for each of the meat quality traits. The lollipop heights in the top track are 
proportional to the number of traits each SNP is associated with. 
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enriched term identified by Gene Ontology (GO) enrichment analysis of genes associated with 
eating quality was “GTPase activator activity” (p-value < 8.0 × 10−5).   

 
CONCLUSION 

This study provides a comprehensive overview of the genetic basis for meat eating quality traits 
in beef cattle by using relatively large and diverse population of Bos taurus indicus. The 
identification of novel genes, alongside the validation of established markers like CAPN1 and CAST, 
highlights both new opportunities and robust evidence for improving eating quality through genetic 
selection. 
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